Abstract

Glycine as one of the most abundant amino acids in human proteins, with extensive applications in both life and industry, is conventionally synthesized through complex procedures or toxic feedstocks. In this study, we present a facile and benign electrochemical pathway for synthesis of glycine through reductive coupling of glyoxylic acid and nitrate over a copper-bismuth bimetal catalyst derived from a metal-organic framework (MOF) array on copper foam (Cu/Bi-C@CF). Remarkably, Cu/Bi-C@CF achieves a fantastic selectivity of 89%, corresponding a high Faraday efficiency of 65.9%. From control experiments, introduction of Bi caused the binding energy of Cu shift to lower state, which leads to a high selectivity towards the formation of key hydroxylamine intermediate rather than ammonia product, facilitating the formation of oxime and providing additional sites for subsequent hydrogenation reaction on the way to glycine. Moreover, the MOF array derivation ensures the effective dispersion of Bi and enhances the stability of Cu/Bi-C@CF. This innovative approach not only presents sustainable pathways for the production of value-added organonitrogen compounds utilizing readily available carbon and nitrogen sources, but also provides novel insights into the design of multistage structural catalysts for sequential reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.