Abstract

The development of efficient electrocatalysts for the energy-related reactions, based on earth-abundant elements, is extremely important for a sustainable energetic future. Herein, we report the application of Cu nanoparticles supported on undoped and N-doped graphene—Cu/GOE and Cu/GOE-u composites, respectively—as electrocatalysts for the oxygen reduction reaction (ORR). All the materials showed ORR electrocatalytic activities in alkaline medium. The Cu/GOE-u composite exhibited the most promising performance, with an onset potential of 0.84 V and a current density of jL = − 4.4 mA cm−2 (vs. 0.84 V and − 2.8 mA cm−2 for Cu/GOE), which revealed the great influence of the created Cu–Nx/C active sites on the ORR electrocatalytic activity. The pure GOE-u support showed worse performance than the GOE, demonstrating that the N-doping advantage is not linear and also depends on the type and amount of accessible active sites created. The N-doping allowed an increase in the selectivity for the 4-electron process, resulting in a % of H2O2 produced < 25% for Cu/GOE-u (vs. almost 75% for Cu/GOE). Both nanocomposites revealed good tolerance to methanol crossover, and the Cu/GOE-u displayed a moderate long-term electrochemical stability, with current retention of 84% after 20,000 s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call