Abstract

<abstract> <p>Due to their environmentally benign elemental components, suitable bandgap and high absorption coefficient in the visible-light range, Cu-based multinary sulfides exhibit excellent photocatalytic properties. Moreover, the adjustable atomic structure and unique electronic state of Cu-based multinary sulfide semiconductors can boost their ability to absorb visible light. In this review, we provide a summary of recent progress in photocatalytic applications of Cu-based multinary sulfide nanomaterials, including Cu-based ternary sulfides (CuInS<sub>2</sub>, CuIn<sub>5</sub>S<sub>8</sub>, Cu<sub>3</sub>SnS<sub>4</sub>, CuFeS<sub>2</sub>, etc.) and Cu-based quaternary sulfides (CuZnInS, Cu<sub>2</sub>ZnSnS<sub>4</sub>, CuZnGaS, CuInGaS, etc.). We start with a review of the bandgap alignments of Cu-based ternary sulfides and Cu-based quaternary sulfides, which are the key factors for the photocatalytic activity of semiconductor photocatalysts. Then, we discuss the advancements in photocatalytic applications of Cu-based multinary sulfide photocatalysts, including photocatalytic H<sub>2</sub> production, CO<sub>2</sub> reduction, organic synthesis and degradation of pollutants and photoelectrochemical H<sub>2</sub> production. Finally, we end this review with a summary of the current challenges and opportunities of Cu-based multinary sulfides in future studies.</p> </abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call