Abstract
Leymus chinensis (L. chinensis) is the dominant plant in the eastern margins of the Eurasian temperate grasslands. It is a very robust species, exhibiting good saline-alkali resistance and stabilizing soil. In this study, 67 soil samples and L. chinensis were collected in western Jilin province, China. The contents of N, P, K, S, Mn, Fe, Zn, Cu and Na were measured, revealing that the growth of L. chinensis was mainly restricted by N based on the stoichiometric N: P ratios of plant. Furthermore, path analysis indicated that N was significantly correlated with K, S, Cu, and Zn. Imbalances in the homeostasis of these four elements may thus constrain N. The homeostasis index of Cu (HCu) in sites with 100%-70% of vegetation cover was only 0.79, it was classified as a sensitive element. However, K, S and Zn, whose concentrations in L. chinensis were significantly related to those of N, exhibited no homeostatic characteristics. These results suggest that when seeking to treat saline-alkali stress, it is important to add fertilizers containing K, S, and Zn to avoid growth limitation. Na+, an ion associated with high soil alkalinity, exhibited weak homeostasis in L. chinensis even in sites with only 40%-10% of vegetation cover. When soil Na exceeded 16000 mg/kg, the homeostasis mechanism of L. chinensis appeared to be overwhelmed, resulting in rapid and probably harmful accumulation of Na. Proper control of N content can alleviate the toxicity of Na stress in L. chinensis and enhance its Na tolerance. Together, these results suggest that combined fertilization with N, K, S, Zn and Cu should be applied to improve grasslands growth. The results of this study can provide a reference basis for sustainable grassland management.
Highlights
Soil salinization has become one of the world’s most serious environmental geological hazards
Since no samples of L. chinensis could be collected from these regions, the 0–10% cover range was excluded from the study
Stepwise regression was used to study the relationship between the measured contents of N and other nutrient elements in L. chinensis representing the three previously defined vegetation coverage groups (Table 3)
Summary
Soil salinization has become one of the world’s most serious environmental geological hazards. N limitations of Leymus chinensis growing in soda saline-alkali soil sustainable land use and development, and for the maintenance of a dynamic balance between ecosystems [2]. The number of high quality pasture sites around the world has declined sharply in recent years because of factors such as global environmental change and overgrazing, which reduce vegetation cover and soil formation, and induce severe deterioration of grassland ecosystems. These processes have significant adverse effects on local social and economic development [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.