Abstract

BackgroundInflammation and myocytes apoptosis play critical roles in the development of doxorubicin (DOX)-induced cardiotoxicity. Our previous study found that C1q/tumour necrosis factor-related protein-3 (CTRP3) could inhibit cardiac inflammation and apoptosis of myocytes but its role in DOX-induced heart injury remains largely unknown. Our study aimed to investigate whether CTRP3 protected against DOX-induced heart injury and the underlying mechanism. MethodsWe overexpressed CTRP3 in the hearts using an adeno-associated virus system. The mice were subjected to a single intraperitoneal injection of DOX (15mg/kg) to induce short-term model for cardiomyopathy. The morphological examination and biochemical analysis were used to evaluate the effects of CTRP3. H9C2 cells were used to verify the protective role of CTRP3 in vitro. ResultsMyocardial CTRP3 protein levels were reduced in DOX-treated mice. Cardiac specific-overexpression of CTRP3 preserved heart dysfunction, and attenuated cardiac inflammation and cell loss induced by DOX in vivo and in vitro. CTRP3 could activate silent information regulator 1 (Sirt1) in vivo and in vitro. Moreover, specific inhibitor of Sirt1 and the silence of Sirt1 could abolish the protective effects of CTRP3 against DOX-induced inflammation and apoptosis. ConclusionCTRP3 protected against DOX-induced heart injury via activation of Sirt1. CTRP3 has therapeutic potential for the treatment of DOX cardiotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.