Abstract
Breast diseases are a group of diseases that appear in different forms. An entire group of these diseases is breast cancer. This disease is one of the most important and common diseases in women. A machine learning system has been trained to identify specific patterns using an algorithm in a machine learning system to diagnose breast cancer. Therefore, designing a feature extraction method is essential to decrease the computation time. In this article, a two-dimensional contourlet is utilized as the input image based on the Breast Cancer Ultrasound Dataset. The sub-banded contourlet coefficients are modeled using the time-dependent model. The features of the time-dependent model are considered the leading property vector. The extracted features are applied separately to determine breast cancer classes based on classification methods. The classification is performed for the diagnosis of tumor types. We used the time-dependent approach to feature contourlet sub-bands from three groups of benign, malignant, and health control test samples. The final feature of 1200 ultrasound images used in three categories is trained based on k-nearest neighbor, support vector machine, decision tree, random forest, and linear discrimination analysis approaches, and the results are recorded. The decision tree results show that the method's sensitivity is 87.8%, 92.0%, and 87.0% for normal, benign, and malignant, respectively. The presented feature extraction method is compatible with the decision tree approach for this problem. Based on the results, the decision tree architecture with the highest accuracy is the more accurate and compatible method for diagnosing breast cancer using ultrasound images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.