Abstract

The induction of antigen specific tolerance is critical for prevention and treatment of allograft rejection. In this study, we transfected CTLA4-Ig gene into dendritic cells (DCs), and investigated their effect on inhibition of lymphocyte activity in vitro and induction of immune tolerance on pancreatic islet allograft in mice. An IDDM C57BL/6 murine model induced by streptozotocin is as model mouse. The model mice were transplanted of the islet cells isolated from the BALB/c mice to their kidney capsules, and injected of CTLA4-Ig modified DCs (mDCs). The results showed that mDCs could significantly inhibit T lymphocyte proliferation and induce its apoptosis; whereas, unmodified DCs (umDCs) promoted the murine lymphocyte proliferation. Compared with injection of umDCs and IgG1 modified DCs, the injection of mDCs prolonged IDDM mice's allograft survival, and normalized their plasma glucose (PG) levels within 3 days and maintained over 2 weeks. The level of IFN-γ was lower and the level of IL-4 was higher in mDCs treated recipient mice than that in control mice, it indicated that mDCs led to Th1/Th2 deviation. After 7 days of islet transplantation, HE stain of the renal specimens showed that the islets and kidneys were intact in structure, and islet cells numbers are increased in mDCs treated mice. Our studies suggest that DCs expressing CTLA4-Ig fusion protein can induce the immune tolerance to islet graft and prolong the allograft survival through the inhibition of T cell proliferation in allogeneic mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.