Abstract
Self-modifying code is extensively used to obfuscate malware and to make reverse engineering harder. It consists in code that can modify its own instructions during the execution. Being able to analyse such code is crucial nowadays. In this paper, we consider the CTL model-checking problem of self modifying code. To model such programs, we use Self Modifying Pushdown Systems (SM-PDS), an extension of pushdown systems whose set of rules can be modified during execution. We reduce the CTL model-checking problem to the emptiness problem of Self-Modifying Alternating Büchi pushdown systems (SM-ABPDS). We implemented our techniques in a tool. We obtained encouraging results. In particular, our tool was able to detect several self-modifying malwares; it could even detect several malwares that well-known antiviruses such as McAfee, Norman, BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360, Avast, and Symantec failed to detect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.