Abstract

A comparative global proteomic screen identified factors required for COMPASS (complex of proteins associated with Set1)-mediated mono-, di-, and trimethylation of the fourth lysine of histone H3 (H3K4), which included components of a cyclin-dependent protein kinase (Ctk complex) that phosphorylates the C-terminal domain of the largest subunit of RNA polymerase II (Pol II). Our results indicate that histone H3K4 methylation levels are regulated by the Ctk1, Ctk2, and Ctk3 components of the Ctk complex. We show that loss of Ctk1 kinase activity results in reduced histone H3K4 monomethylation levels, followed by a global increase in histone H3K4 trimethylation levels on chromatin. Ctk1 loss does not appear to have a substantial effect on histone H2B monoubiquitination levels or COMPASS and Paf1 complex phosphorylation. Our chromatin immunoprecipitation studies demonstrate that histone H3 eviction during active transcription is decelerated in a CTK1 deletion strain in response to reduced levels of Pol II recruitment. Our in vitro studies show that the onset of monomethylation on an unmethylated histone H3 by COMPASS is virtually immediate, while the onset of trimethylation occurs upon extended time of association between the histone tail and COMPASS. Our study suggests a role for the Ctk complex in the regulation of the pattern of H3K4 mono-, di-, and trimethylation via COMPASS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.