Abstract

BackgroundTumor immune cell infiltration is closely associated with the occurrence and development of tumors. Collagen triple helix repeats containing 1 (CTHRC1), a regulator of collagen expression and cell migration, is involved in the metastasis and invasion of tumors. However, the role of CTHRC1 in breast cancer remains unclear. This study aimed to investigate the prognostic value of CTHRC1, and further explore its association with immune infiltration in breast cancer.MethodsCTHRC1 expression pattern and prognostic value were analyzed using ONCOMINE, PrognoScan, GEPIA, and Kaplan–Meier Plotter databases. We then detected CTHRC1 mRNA levels in breast cancer tissues and paired normal breast tissues by Q-PCR. Subsequently, the University of California Santa Cruz (UCSC) database was used to determine the methylation status of CTHRC1. Furthermore, CTHRC1 mutations were investigated using the Catalogue of Somatic mutations in Cancer (COSMIC) and cBioPortal databases. We also assessed the correlation between CTHRC1 expression and immune cell infiltration using TIMER. In addition, The relationship of CTHRC1 expression with the immune marker sets of various immune cells was evaluated using GEPIA and TIMER.ResultsCTHRC1 was highly expressed in a variety of tumors, including breast cancer. Elevated CTHRC1 expression was related to a poor prognosis. Notably, CTHRC1 expression was significantly associated with macrophage infiltration, especially the immune infiltration gene marker set of M2. Copy number variations, DNA mutations and methylation states might be potential mechanisms for regulating CTHRC1 expression. Protein digestion and absorption, human papillomavirus infection, ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathways were identified as the potential CTHRC1-driven signaling pathways.ConclusionThese findings suggest that CTHRC1 could be a promising immune-related biomarker for the treatment of breast cancer patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.