Abstract

Excessive deposition of fibronectin in the glomerular mesangium in diabetic nephropathy (DN) is partly due to the induction of transforming growth factor-beta (TGF-beta) by high glucose. TGF-beta induces its downstream mediator connective tissue growth factor (CTGF), which stimulates fibronectin matrix synthesis, a process that requires the presence of alpha5beta1 integrin. Although TGF-beta has been shown to upregulate alpha5beta1 integrin expression in human mesangial cells (HMC), little is known about the effect of CTGF on levels of this receptor. This study tested whether CTGF modulates alpha5beta1 expression by HMC in culture and whether changes induced by TGF-beta are mediated through the induction of CTGF. FACS analysis showed that both TGF-beta and CTGF significantly increased cell-surface alpha5beta1 levels compared with basal conditions. RT-PCR indicated that the changes were at the level of transcription. Treatment of cells with TGF-beta and antisense CTGF oligonucleotides significantly reduced the TGF-beta-induced increases in alpha5beta1 levels. CTGF and TGF-beta also significantly increased levels of ligand-occupied cell-surface beta1 integrins and cell adhesion to fibronectin, the main alpha5beta1 substrate. Antisense CTGF significantly reduced the number of adherent cells from TGF-beta-stimulated cultures. Finally, alpha5beta1 blocking antibodies inhibited HMC fibronectin matrix deposition, confirming the importance of this receptor for this process. Taken together, these data provide evidence that CTGF controls alpha5beta1 expression by HMC in vitro. Alterations in alpha5beta1 levels induced by TGF-beta are mediated at least in part through the induction of CTGF, and specific targeting of either alpha5beta1 or CTGF could be useful in controlling excessive fibronectin matrix production in DN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.