Abstract
Connective tissue growth factor (CTGF) expression is elevated in advanced stages of breast cancer, but the regulatory role of CTGF in invasive breast cancer cell phenotypes is unclear. Presently, overexpression of CTGF in MCF-7 cells (MCF-7/CTGF cells) enhanced cellular migratory ability and spindle-like morphological alterations, as evidenced by actin polymerization and focal-adhesion-complex aggregation. Reducing the CTGF level in MDA-MB-231 (MDA231) cells by antisense CTGF cDNA (MDA231/AS cells) impaired cellular migration and promoted a change to an epithelial-like morphology. A neutralizing antibody against integrin alphavbeta3 significantly attenuated CTGF-mediated ERK1/2 activation and cellular migration, indicating that the integrin-alphavbeta3-ERK1/2 signaling pathway is crucial in mediating CTGF function. Moreover, the cDNA microarray analysis revealed CTGF-mediated regulation of the prometastatic gene S100A4. Transfection of MCF-7/CTGF cells with AS-S100A4 reversed the CTGF-induced cellular migratory ability, whereas overexpression of S100A4 in MDA231/AS cells restored their high migratory ability. Genetic and pharmacological manipulations suggested that the CTGF-mediated S100A4 upregulation was dependent on ERK1/2 activation, with expression levels of CTGF and S100A4 being closely correlated with human breast tumors. We conclude that CTGF plays a crucial role in migratory/invasive processes in human breast cancer by a mechanism involving activation of the integrin-alphavbeta3-ERK1/2-S100A4 pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.