Abstract

BackgroundHIV latency is an obstacle for the eradication of HIV from infected individuals. Stable post-integration latency is controlled principally at the level of transcription. The HIV trans-activating protein, Tat, plays a key function in enhancing HIV transcriptional elongation. The HIV core promoter is specifically required for Tat-mediated trans-activation of HIV transcription. In addition, the HIV core promoter has been shown to be a potential anti-HIV drug target. Despite the pivotal role of the HIV core promoter in the control of HIV gene expression, the molecular mechanisms that couple Tat function specifically to the HIV core promoter remain unknown.ResultsUsing electrophoretic mobility shift assays (EMSAs), the TATA box and adjacent sequences of HIV essential for Tat trans-activation were shown to form specific complexes with nuclear extracts from peripheral blood mononuclear cells, as well as from HeLa cells. These complexes, termed pre-initiation complexes of HIV (PICH), were distinct in composition and DNA binding specificity from those of prototypical eukaryotic TATA box regions such as Adenovirus major late promoter (AdMLP) or the hsp70 promoter. PICH contained basal transcription factors including TATA-binding protein and TFIIA. A mutational analysis revealed that CTGC motifs flanking the HIV TATA box are required for Tat trans-activation in living cells and correct PICH formation in vitro. The binding of known core promoter binding proteins AP-4 and USF-1 was found to be dispensable for Tat function. TAR RNA prevented stable binding of PICH-2, a complex that contains the general transcription factor TFIIA, to the HIV core promoter. The impact of TAR on PICH-2 specifically required its bulge sequence that is also known to interact with Tat.ConclusionOur data reveal that CTGC DNA motifs flanking the HIV TATA box are required for correct formation of specific pre-initiation complexes in vitro and that these motifs are also required for Tat trans-activation in living cells. The impact of TAR RNA on PICH-2 stability provides a mechanistic link by which pre-initiation complex dynamics could be coupled to the formation of the nascent transcript by the elongating transcription complex. Together, these findings shed new light on the mechanisms by which the HIV core promoter specifically responds to Tat to activate HIV gene expression.

Highlights

  • HIV latency is an obstacle for the eradication of HIV from infected individuals

  • Host cell complexes formed on TASHET are distinct from those forming on the Adenovirus major late promoter (AdMLP) We have recently reported electrophoretic mobility shift assay (EMSA) conditions that are optimised to allow the detection of endogenous RNA Pol RNA polymerase II (II) pre-initiation complexes (PIC) [36]

  • The data we present here show for the first time that the TATA box of HIV and adjacent sequences of HIV essential for Tat trans activation (TASHET) is recognized by cellular pre-initiation complexes (PICHs) that: 1) are distinct from canonical PIC that recognize the model AdMLP, 2) require the flanking CTGC motifs for their accurate formation, and 3) include pre-initiation complexes of HIV (PICH)-2 whose stable binding to TASHET is disrupted by HIV TAR RNA

Read more

Summary

Introduction

HIV latency is an obstacle for the eradication of HIV from infected individuals. Stable post-integration latency is controlled principally at the level of transcription. The HIV trans-activating protein, Tat, plays a key function in enhancing HIV transcriptional elongation. The HIV core promoter is required for Tat-mediated trans-activation of HIV transcription. Once HIV transcription occurs, the HIV Tat gene product can be expressed and plays an important role in the exit from latency by driving a feed-forward loop to fully activate viral transcription [7]. Tat acts by physically interacting with a stem-loop structure of the nascent 5’ HIV RNA termed TAR. Tat binds to TAR in conjunction with an essential cellular cofactor termed positive transcription elongation factor b (P-TEFb), composed of CDK9 and Cyclin T1 [8,9,10]. The HIV trans-activator Tat drives an amplification loop during the reactivation of latent HIV

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call