Abstract
Two-dimensional NMR spectroscopic and computational methods were employed for the structure determination of an 18-residue peptide with the amino acid sequence of the C-terminal retroviral-type (r.t.) zinc finger domain from the nucleocapsid protein (NCP) of HIV-1 [Zn(HIV1-F2)]. Unlike results obtained for the first retroviral-type zinc finger peptide, Zn(HIV1-F1), [Summers et al. (1990) Biochemistry 29, 329], broad signals indicative of conformational lability were observed in the 1H NMR spectrum of Zn-(HIV1-F2) at 25 degrees C. The NMR signals narrowed upon cooling to -2 degrees C, enabling complete 1H NMR signal assignment via standard two-dimensional (2D) NMR methods. Distance restraints obtained from qualitative analysis of 2D nuclear Overhauser effect (NOESY) data were used to generate 30 distance geometry (DG) structures with penalties (penalty = sum of the squared differences between interatomic distances defined in the restraints file and in the DG structures) in the range 0.02-0.03 A2. All structures were qualitatively consistent with the experimental NOESY spectrum based on comparisons with 2D NOESY back-calculated spectra. Superposition of the backbone atoms (C, C alpha, N) for residues C(1)-C(14) gave pairwise RMSD values in the range 0.16-0.75 A. The folding of Zn(HIV1-F2) is very similar to that observed for Zn(HIV1-F1). Small differences observed between the two finger domains are localized to residues between His(9) and Cys(14), with residues M(11)-C(14) forming a 3(10) helical corner.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.