Abstract

BackgroundRecent studies have illustrated that the transcription co-repressor, C-terminal binding protein 1 (CtBP1), links the metabolic alterations to transcription controls in proliferation, EMT, genome stability, metabolism, and lifespan, but whether CtBP1 affects the cellular redox homeostasis is unexplored. This study was designed to investigate the mechanism of CtBP1-mediated transcription repression that contributes to the metabolic reprogramming.Material/MethodsKnockdown of CtBP1 in both mouse MEF cells and human melanoma cells changed cell redox homeostasis. Further, chromatin immunoprecipitation (ChIP) and luciferase reporter assay were performed for identification of CtBP1 downstream targets, pyruvate carrier 1 and 2 genes (MPC1 and MPC2), which contribute to redox homeostasis and are transcriptionally regulated by CtBP1. Moreover, blockage of the cellular NADH level with the glycolysis inhibitor 2-Deoxy-D-Glucose (2-DG) rescued MPC1 and MPC2 expression. MTT assay and scratch assay were performed to investigate the effect of MPC1 and MPC2 expression on malignant properties of melanoma cells.ResultsThe data demonstrated that CtBP1 directly bound to the promoters of MPC1 and MPC2 and transcriptionally repressed them, leading to increased levels of free NADH in the cytosol and nucleus, thus positively feeding back CtBP1’s functions. Consequently, restoring MPC1 and MPC2 in human tumor cells decreases free NADH and inhibits melanoma cell proliferation and migration.ConclusionsOur data indicate that MPC1 and MPC2 are principal mediators that link CtBP1-mediated transcription regulation to NADH production. The discovery of CtBP1 as an NADH regulator in addition to being an NADH sensor shows that CtBP1 is at the center of tumor metabolism and transcription control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.