Abstract
AimsPediatric heart failure is a common cardiovascular disease in clinical pediatrics. CCCTC-binding factor (CTCF), a novel transcriptional repressor, was reported to participate in the occurrence of various cardiovascular diseases. The present study focuses on exploring the effects of CTCF on tunicamycin (TM)-induced endoplasmic reticulum (ER) stress, and investigating the underlying mechanisms. Materials and methodExpression of CTCF in blood samples of heart failure children and TM-induced cardiomyocytes were evaluated by real-time quantitative PCR (RT-qPCR). Apoptotic rate of cardiomyocytes was detected by Annexin v assay. Western blotting and enzyme-linked immunosorbent assay (ELISA) were applied to examine the effect of CTCF on ER stress. Co-immunoprecipitation and western blotting were devoted to explore the mechanism by which CTCF contributes to ER stress. Key findingsWe proved that CTCF was lowly expressed in blood samples of heart failure children and TM-induced cardiomyocytes, and overexpression of CTCF weaken the TM-induced ER stress. Using co-immunoprecipitation and protein blots, we demonstrated that CTCF upregulates RYR2 by inhibiting S100A1, thus mediating the PERK signaling pathway and regulating ER stress. SignificanceOur data revealed that CTCF protects cardiomyocytes from ER stress through S100A1-RYR2 axis, and can be applied as a therapeutic target for the treatment of pediatric heart failure in future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.