Abstract
We demonstrated previously that shortened forms of (stem II-deleted) hammerhead ribozymes with low intrinsic activity form very active dimers with a common stem II (very active short ribozymes capable of forming dimers were designated maxizymes). As a result of such a dimeric structure, heterodimeric maxizymes are potentially capable of cleaving a substrate at two different sites simultaneously. In this case, active heterodimers are in equilibrium with inactive homodimers. Longer forms of common stem II can lead to enrichment of the active heterodimers in vitro. In this study, we investigated whether the cationic detergent CTAB, which is known to enhance strand displacement of nucleic acids, might inhibit the dimerization of maxizymes. Significantly, under all conditions examined, CTAB instead enhanced the activity of a variety of maxizymes, with the extent of enhancement depending on the conditions. The activity of our least stable, least active maxizyme was enhanced 100-fold by CTAB. The strand displacement activity of CTAB thus appears to enhance the conversion of alternative conformations of inactive maxizymes, with intra- and inter-molecular hydrogen bonds, to active forms. Thus, our smallest maxizyme can also be considered a potential candidate for a gene-inactivating agent in vivo, in view of the fact that various facilitators of strand displacement reactions are known to exist in vivo (indeed, a separate experiment in cell culture supported the conclusion that our smallest maxizyme is a good gene-inactivating agent). Although activities of ribozymes in vitro do not necessarily reflect their activities in vivo, our findings suggest that the activity of ribozymes in vivo can be better estimated by running ribozyme kinetics in the presence of CTAB in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.