Abstract
Gamma-rays provide a powerful insight into the non-thermal universe and perhaps a unique probe for new physics beyond the standard model. Current experiments are already giving results in the physics of acceleration of cosmic rays in supernova remnants, pulsar and active galactic nuclei with a 100 sources detected at very-high-energies so far. Despite its relatively recent appearance, very high-energy gamma-ray astronomy has proven to have reached a mature technology with fast assembling, relatively cheap and reliable telescopes. The goal of future installation is to increase the sensitivity by a factor 10 compared to current installations, and enlarge the energy domain from few 10s of GeV to a 100 TeV. Gamma-ray spectra of astrophysical origin are rather soft thus hardly one single size telescope can cover more than 1.5 decades in energy, therefore an array of telescopes of 2–3 different sizes is required. Hereafter, we present design considerations for a Cherenkov Telescope Array (CTA), a project for a new generation of highly automated telescopes for gamma-ray astronomy. The status of the project, technical solutions and an insight in the involved physics will be presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.