Abstract
Magnolol, a major bioactive component found in Magnolia officinalis with anti-inflammation and anti-oxidation activities as well as minimized cytotoxic effects. Although magnolol has a wide range of clinical applications, the anti-tumor activity of magnolol is not efficient. Herein, we reported the synthesis and anti-cancer activities of three novel magnolol analogues CT2-1, CT2-2, CT2-3, among which CT2-3 revealed more efficient anti-non-small cell lung cancer (NSCLC) activity than magnolol. Our data showed that CT2-3 could significantly inhibit the proliferation of human NSCLC cells in a dose-dependent manner. In addition, we revealed CT2-3 could induce cell cycle arrest through down-regulating mRNA expression of CDK4, CDK6 and cyclin D1. Moreover, we verified that CT2-3 could cause ROS generation, leading to apoptosis of human NSCLC cells. Further more, we also provided strong evidences that CT2-3 down-regulates the expression of c-Myc and topoisomerases, and contributes to the apoptosis of human NSCLC cells. Taken together, the current study is the first to report a promising new chemotherapeutic drug candidate CT2-3 that can efficiently eliminate human NSCLC cells through triggering cell cycle arrest as well as ROS-mediated and c-Myc/topoisomerases-mediated apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.