Abstract
MR-only radiotherapy planning is beneficial from the perspective of both time and safety since it uses synthetic CT for radiotherapy dose calculation instead of real CT scans. To elevate the accuracy of treatment planning and apply the results in practice, various methods have been adopted, among which deep learning models for image-to-image translation have shown good performance by retaining domain-invariant structures while changing domain-specific details. In this paper, we present an overview of diverse deep learning approaches to MR-to-CT synthesis, divided into four classes: convolutional neural networks, generative adversarial networks, transformer models, and diffusion models. By comparing each model and analyzing the general approaches applied to this task, the potential of these models and ways to improve the current methods can be can be evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.