Abstract
ObjectiveTo investigate a method using multi-sequence magnetic resonance imaging (MRI) to synthesize computed tomography (CT) for MRI-only radiation therapy. ApproachWe proposed an adaptive multi-sequence fusion network (AMSF-Net) to exploit both voxel- and context-wise cross-sequence correlations from multiple MRI sequences to synthesize CT using element- and patch-wise fusions, respectively. The element- and patch-wise fusion feature spaces were combined, and the most representative features were selected for modeling. Finally, a densely connected convolutional decoder was applied to utilize the selected features to produce synthetic CT images. Main resultsThis study includes a total number of 90 patients’ T1-weighted MRI, T2-weighted MRI and CT data. The AMSF-Net reduced the average mean absolute error (MAE) from 52.88-57.23 to 49.15 HU, increased the peak signal-to-noise ratio (PSNR) from 24.82-25.32 to 25.63 dB, increased the structural similarity index measure (SSIM) from 0.857-0.869 to 0.878, and increased the dice coefficient of bone from 0.886-0.896 to 0.903 compared to the other three existing multi-sequence learning models. The improvements were statistically significant according to two-tailed paired t-test. In addition, AMSF-Net reduced the intensity difference with real CT in five organs at risk, four types of normal tissue and tumor compared with the baseline models. The MAE decreases in parotid and spinal cord were over 8% and 16% with reference to the mean intensity value of the corresponding organ, respectively. Further, the qualitative evaluations confirmed that AMSF-Net exhibited superior structural image quality of synthesized bone and small organs such as the eye lens. SignificanceThe proposed method can improve the intensity and structural image quality of synthetic CT and has potential for use in clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.