Abstract

Computerized tomography (CT) synthesis from cone-beam computerized tomography (CBCT) is a key step in adaptive radiotherapy. It uses a synthetic CT to calculate the dose to correct and adjust the radiotherapy plan in a timely manner. The cycle-consistent adversarial network (Cycle GAN) is commonly used in CT synthesis tasks but it has some defects: (a) the premise of the cycle consistency loss is that the conversion between domains is bijective, but the CBCT and CT conversion does not fully satisfy the bijective relationship, and (b) it does not take advantage of the complementary information between multiple sets of CBCTs for the same patient. To address these problems, we propose a novel framework named the sequence-aware contrastive generative network (SCGN) that introduces an attention sequence fusion module to improve the CBCT quality. In addition, it not only applies contrastive learning to the generative adversarial networks (GANs) to pay more attention to the anatomical structure of CBCT in feature extraction but also uses a new generator to improve the accuracy of the anatomical details. Experimental results on our datasets show that our method significantly outperforms the existing unsupervised CT synthesis methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call