Abstract
The aim of this study was to construct and verify a computed tomography (CT) radiomics model for preoperative prediction of synchronous distant metastasis (SDM) in clear cell renal cell carcinoma (ccRCC) patients. Overall, 172 patients with ccRCC were enrolled in the present research. Contrast-enhanced CT images were manually sketched, and 2994 quantitative radiomic features were extracted. The radiomic features were then normalized and subjected to hypothesis testing. Least absolute shrinkage and selection operator (LASSO) was applied to dimension reduction, feature selection, and model construction. The performance of the predictive model was validated through analysis of the receiver operating characteristic curve. Multivariate and subgroup analyses were performed to verify the radiomic score as an independent predictor of SDM. The patients randomized into a training (n = 104) and a validation (n = 68) cohort in a 6:4 ratio. Through dimension reduction using LASSO regression, 9 radiomic features were used for the construction of the SDM prediction model. The model yielded moderate performance in both the training (area under the curve, 0.89; 95% confidence interval, 0.81-0.97) and the validation cohort (area under the curve, 0.83; 95% confidence interval, 0.69-0.95). Multivariate analysis showed that the CT radiomic signature was an independent risk factor for clinical parameters of ccRCC. Subgroup analysis revealed a significant connection between the SDM and radiomic signature, except for the lower pole of the kidney subgroup. The CT-based radiomics model could be used as a noninvasive, personalized approach for SDM prediction in patients with ccRCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.