Abstract
Mesenchymal stem cells (MSCs) have shown potential as an innovative treatment for pulmonary fibrosis (PF), due to their capability to ameliorate the inflammation and moderate the deterioration of PF. The fate of the stem cells transplanted into the lung, including survival, migration, homing, and functions, however, has not been fully understood yet. In this paper, we report the development of a computed tomography/magnetic resonance (CT/MR) dual-modal nanotracer, gold/gadolinium nanoclusters overcoated with a silica shell (Au/GdNC@SiO2), for noninvasive labeling and tracking of the transplanted human MSCs (hMSCs) in a PF model. The Au/GdNC@SiO2 nanotracer exhibits good colloidal and chemical stability, high biocompatibility, enhanced longitudinal MR relaxivity, and superior X-ray attenuation property. The hMSCs can be effectively labeled with Au/GdNC@SiO2, resulting in a significantly increased cellular CT/MR imaging contrast, without any obvious adverse effect on the function, including proliferation and differentiation of the labeled stem cells. Moreover, by using the Au/GdNC@SiO2 nanotracer, the hMSCs transplanted in the lung can be tracked for 7 d via in vivo CT/MR dual-modality imaging. This work may provide an insight into the role the transplanted hMSCs play in PF therapy, thus promoting the stem cell-based regenerative medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.