Abstract

Summary The cold production process has increased primary heavy oil production and has been applied with commercial success in the Lloydminster area (Alberta, Canada). In this process, the production of sand is encouraged in order to form high permeability channels (wormholes) within the formation. The process depends on the formation and flow of foamy oil into the wormholes as these grow away from the wellbore and into the reservoir. The formation and growth of a wormhole was visualized using a computed tomography scanner, in an experiment in which oil flowed through a horizontal sandpack and out an orifice. The only drive mechanism was the formation and expansion of methane bubbles within the live oil. The pressure gradient at the tip of the wormhole was approximately 1 MPa/m when it started to develop at the orifice. Two conditions appear necessary for wormholes to keep growing: (1) the pressure gradient at the tip of the wormhole must be sufficiently large to dislodge the sand grains, (2) the pressure gradient along the wormhole must be large enough to transport the sand from the tip to the orifice. The pressure gradient at the tip of the wormhole was 2.9 MPa/m when it reached its maximum length. This suggests that, although the pressure gradient at the tip was sufficient for erosion to occur, the sand could not be carried along the wormhole causing the wormhole to stop growing. The pressure depletion experiment suggests that wormholes can easily develop in uncemented sand in the field since the maximum oil production rate during wormhole growth (18 cm3/day) was significantly lower than in the field. The minimum pressure gradient (11 kPa/m) necessary for sand transport along the wormhole is important in calculating the extent of wormhole growth in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.