Abstract

In the setting of myocardial ischemia, recovery of myocardial function by revascularization procedures depends on the extent of coronary disease and myocardial scar burden. Currently, computed tomographic (CT) imaging offers superior evaluation of coronary lesions but lacks the capability to measure the transmural extent of myocardial scar. Our work focuses on determining if collagen-targeting gold nanoparticles (AuNPs) can effectively target myocardial scar and provide adequate contrast for CT imaging. AuNPs were coated with a collagen-homing peptide, collagen adhesin (CNA35). Myocardial scar was created in mice by occlusion/reperfusion of the left anterior descending coronary artery. Thirty days later, un-gated CT imaging was performed. Over 6h, CNA35-AuNPs provided uniform and prolonged opacification of the vascular structures (100-130HU). In mice with larger scar burden, focal contrast enhancement was detected in the myocardium, which was not apparent within that of control mice. Histological staining confirmed myocardial scar formation and accumulation of AuNPs. From the Clinical EditorThis team of investigators presents a collagen-targeting gold nanoparticle-based approach that enables the imaging of myocardial scars via CT scans in a rodent model. This information would enable clinicians to judge the recovery potential of myocardium more accurately than the current CT-scan based approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.