Abstract

To identify micro-computed tomography (CT) imaging biomarkers for evaluating the effects of emodin, a potential drug to treat osteoporosis, in the mouse model of lipopolysaccharide (LPS)-mediated osteoporosis. Forty male imprinting control region (ICR) mice with LPS-induced bone resorption were equally divided into four experimental groups: phosphate-buffered saline-treated (control), emodin-treated, LPS-treated, and LPS + emodin-treated groups. Emodin (50 mg/kg) was administered orally on alternate days for 8 days, and LPS (5 mg/kg) was injected intraperitoneally on days 1 and 4. After 8 days, the mice were sacrificed, and micro-CT images of the left proximal femurs were obtained. Three-dimensional images were analyzed by using commercial software to measure the bone volume to total volume fraction (BV/TV), trabecular number (Tb-N), trabecular thickness (Tb-Th), and trabecular separation (Tb-Sp) as CT imaging biomarkers. Histologic analyses of the femurs were performed using hematoxylin and eosin and tartrate-resistant acid phosphatase (TRAP) immunohistochemical staining. The LPS + emodin-treated group demonstrated marked suppression of LPS-induced bone resorption compared to the LPS-treated group (BV/TV, 28.84% vs. 40.76%; Tb-N, 2.65 vs. 3.45 mm(-1); Tb-Sp, 300.81 vs. 212.31 μm; Tb-Th, 116.94 vs. 131.25 μm). TRAP immunohistochemical analysis showed fewer osteoclasts per field of tissue in the LPS + emodin-treated group than in the LPS-treated group (27.8 vs. 41.8). The BV/TV, Tb-N, and Tb-Sp data correlated well with the histomorphometric findings. The findings reveal a novel effect of emodin on bone remodeling in the LPS-mediated osteoporotic mouse model. The ex vivo micro-CT imaging is a promising tool for assessing the therapeutic effects of potential drugs on osteoporosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call