Abstract

IntroductionRadiomics methods are used to analyze various medical images, including computed tomography (CT), magnetic resonance, and positron emission tomography to provide information regarding the diagnosis, patient outcome, tumor phenotype, and the gene-protein signatures of various diseases. In low-risk group, complete surgical resection is typically sufficient, whereas in high-risk thymoma, adjuvant therapy is usually required. Therefore, it is important to distinguish between both.This study evaluated the CT radiomics features of thymomas to discriminate between low- and high-risk thymoma groups.Materials and methodsIn total, 83 patients with thymoma were included in this study between 2004 and 2019. We used the Radcloud platform (Huiying Medical Technology Co., Ltd.) to manage the imaging and clinical data and perform the radiomics statistical analysis. The training and validation datasets were separated by a random method with a ratio of 2:8 and 502 random seeds. The histopathological diagnosis was noted from the pathology report.ResultsFour machine-learning radiomics features were identified to differentiate a low-risk thymoma group from a high-risk thymoma group. The radiomics feature names were Energy, Zone Entropy, Long Run Low Gray Level Emphasis, and Large Dependence Low Gray Level Emphasis.ConclusionsThe results demonstrated that a machine-learning model and a multilayer perceptron classifier analysis can be used on CT images to predict low- and high-risk thymomas. This combination could be a useful preoperative method to determine the surgical approach for thymoma.

Highlights

  • Radiomics methods are used to analyze various medical images, including computed tomography (CT), magnetic resonance, and positron emission tomography to provide information regarding the diagnosis, patient outcome, tumor phenotype, and the gene-protein signatures of various diseases

  • The results demonstrated that a machine-learning model and a multilayer perceptron classifier analysis can be used on CT images to predict low- and high-risk thymomas

  • This combination could be a useful preoperative method to determine the surgical approach for thymoma

Read more

Summary

Materials and methods

The study protocol was approved by the Institutional Review Board of Ankara University, Faculty of Medicine (IRB no: I7-426-20). The initial study population included 221 consecutive patients who underwent surgical resection or biopsy between 2004 and 2019 in the Thoracic Surgery Department and were diagnosed with a thymic epithelial tumor in the Department of Pathology of Ankara University Medical Faculty. Of these patients, 158 were diagnosed with thymoma. Four radiomics features were identified that differentiated the low-risk group from the high-risk group of thymomas using machine learning, including Energy, Zone Entropy, Long Run Low Gray Level Emphasis, and Large Dependence Low Gray Level Emphasis (Fig. 4c).

Results
Conclusions
Introduction
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.