Abstract

Background and purposeCurrent models for the prediction of late patient-rated moderate-to-severe xerostomia (XER12m) and sticky saliva (STIC12m) after radiotherapy are based on dose-volume parameters and baseline xerostomia (XERbase) or sticky saliva (STICbase) scores. The purpose is to improve prediction of XER12m and STIC12m with patient-specific characteristics, based on CT image biomarkers (IBMs). MethodsPlanning CT-scans and patient-rated outcome measures were prospectively collected for 249 head and neck cancer patients treated with definitive radiotherapy with or without systemic treatment. The potential IBMs represent geometric, CT intensity and textural characteristics of the parotid and submandibular glands. Lasso regularisation was used to create multivariable logistic regression models, which were internally validated by bootstrapping. ResultsThe prediction of XER12m could be improved significantly by adding the IBM “Short Run Emphasis” (SRE), which quantifies heterogeneity of parotid tissue, to a model with mean contra-lateral parotid gland dose and XERbase. For STIC12m, the IBM maximum CT intensity of the submandibular gland was selected in addition to STICbase and mean dose to submandibular glands. ConclusionPrediction of XER12m and STIC12m was improved by including IBMs representing heterogeneity and density of the salivary glands, respectively. These IBMs could guide additional research to the patient-specific response of healthy tissue to radiation dose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.