Abstract
To develop a CT-based radiomics signature and assess its ability for preoperatively predicting the early recurrence (≤1 year) of hepatocellular carcinoma (HCC). A total of 215 HCC patients who underwent partial hepatectomy were enrolled in this retrospective study, and all the patients were followed up at least within 1 year. Radiomics features were extracted from arterial- and portal venous-phase CT images, and a radiomics signature was built by the least absolute shrinkage and selection operator (LASSO) logistic regression model. Preoperative clinical factors associated with early recurrence were evaluated. A radiomics signature, a clinical model, and a combined model were built, and the area under the curve (AUC) of operating characteristics (ROC) was used to explore their performance to discriminate early recurrence. Twenty-one radiomics features were chosen from 300 candidate features to build a radiomics signature that was significantly associated with early recurrence (P<0.001), and they presented good performance in the discrimination of early recurrence alone with an AUC of 0.817 (95% CI: 0.758-0.866), sensitivity of 0.794, and specificity of 0.699. The AUCs of the clinical and combined models were 0.781 (95% CI: 0.719-0.834) and 0.836 (95% CI: 0.779-0.883), respectively, with the sensitivity being 0.784 and 0.824, and the specificity being 0.619 and 0.708, respectively. Adding a radiomics signature into conventional clinical variables can significantly improve the accuracy of the preoperative model in predicting early recurrence (P=0.01). The radiomics signature was a significant predictor for early recurrence in HCC. Incorporating radiomics signature into conventional clinical factors performed better for preoperative estimation of early recurrence than with clinical variables alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.