Abstract

BackgroundTo construct and assess a computed tomography (CT)-based deep learning radiomics nomogram (DLRN) for predicting the pathological grade of bladder cancer (BCa) preoperatively.MethodsWe retrospectively enrolled 688 patients with BCa (469 in the training cohort, 219 in the external test cohort) who underwent surgical resection. We extracted handcrafted radiomics (HCR) features and deep learning (DL) features from three-phase CT images (including corticomedullary-phase [C-phase], nephrographic-phase [N-phase] and excretory-phase [E-phase]). We constructed predictive models using 11 machine learning classifiers, and we developed a DLRN by combining the radiomic signature with clinical factors. We assessed performance and clinical utility of the models with reference to the area under the curve (AUC), calibration curve, and decision curve analysis (DCA).ResultsThe support vector machine (SVM) classifier model based on HCR and DL combined features was the best radiomic signature, with AUC values of 0.953 and 0.943 in the training cohort and the external test cohort, respectively. The AUC values of the clinical model in the training cohort and the external test cohort were 0.752 and 0.745, respectively. DLRN performed well on both data cohorts (training cohort: AUC = 0.961; external test cohort: AUC = 0.947), and outperformed the clinical model and the optimal radiomic signature.ConclusionThe proposed CT-based DLRN showed good diagnostic capability in distinguishing between high and low grade BCa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.