Abstract
To develop and evaluate a low-volume contrast media protocol for thoracoabdominal CT angiography (CTA) with photon-counting detector (PCD) CT. This prospective study included consecutive participants (April-September 2021) who underwent CTA with PCD CT of the thoracoabdominal aorta and previous CTA with energy-integrating detector (EID) CT at equal radiation doses. In PCD CT, virtual monoenergetic images (VMI) were reconstructed in 5-keV intervals from 40 to 60 keV. Attenuation of the aorta, image noise, and contrast-to-noise ratio (CNR) were measured, and subjective image quality was rated by two independent readers. In the first group of participants, the same contrast media protocol was used for both scans. CNR gain in PCD CT compared with EID CT served as the reference for contrast media volume reduction in the second group. Noninferiority analysis was used to test noninferior image quality of the low-volume contrast media protocol with PCD CT. The study included 100 participants (mean age, 75 years ± 8 [SD]; 83 men). In the first group (n = 40), VMI at 50 keV provided the best trade-off between objective and subjective image quality, achieving 25% higher CNR compared with EID CT. Contrast media volume in the second group (n = 60) was reduced by 25% (52.5 mL). Mean differences in CNR and subjective image quality between EID CT and PCD CT at 50 keV were above the predefined boundaries of noninferiority (-0.54 [95% CI: -1.71, 0.62] and -0.36 [95% CI: -0.41, -0.31], respectively). CTA of the aorta with PCD CT was associated with higher CNR, which was translated into a low-volume contrast media protocol demonstrating noninferior image quality compared with EID CT at the same radiation dose.Keywords: CT Angiography, CT-Spectral, Vascular, Aorta, Contrast Agents-Intravenous, Technology Assessment© RSNA, 2023See also the commentary by Dundas and Leipsic in this issue.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.