Abstract

Temporal reasoning is crucial for action recognition tasks. The previous works use 3D CNNs to jointly capture spatiotemporal information, but it causes a lot of computational costs as well. To improve the above problems, we propose a general channel split spatiotemporal network (CSST-Net) to achieve effective spatiotemporal feature representation learning. The CSST module consists of the grouped spatiotemporal modeling (GSTM) module and the parameter-free feature fusion (PFFF) module. The GSTM module decomposes features into spatial and temporal parts along the channel dimension in parallel, which focuses on spatial and temporal clues respectively. Meanwhile, we utilize the combination of group-wise convolution and point-wise convolution to reduce the number of parameters in the temporal branch, thus alleviating the overfitting of 3D CNNs. Furthermore, for the problem of spatiotemporal feature fusion, the PFFF module performs the recalibration and fusion of spatial and temporal features by a soft attention mechanism, without introducing extra parameters, thus ensuring the correct network information flow effectively. Finally, extensive experiments on three benchmark databases (Sth-Sth V1, Sth-Sth V2, and Jester) indicate that the proposed CSST-Net can achieve competitive performance compared to existing methods, and significantly reduces the number of parameters and FLOPs of 3D CNNs baseline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.