Abstract

ABSTRACT The Chinese Space Station Telescope (CSST) slitless spectroscopic survey will observe objects to a limiting magnitude of ∼23 mag (5σ, point sources) in U, V, and I over 17 500 deg2. The spectroscopic observations are expected to be highly efficient and complete for mapping galaxies over 0 < z < 1 with secure redshift measurements at spectral resolutions of R ∼ 200, providing unprecedented data sets for cosmological studies. To quantitatively examine the survey potential, we develop a software tool, namely the CSST Emulator for Slitless Spectroscopy (CESS), to quickly generate simulated 1D slitless spectra with limited computing resources. We introduce the architecture of CESS and the detailed process of creating simulated CSST slitless spectra. The extended light distribution of a galaxy induces the self-broadening effect on the 1D slitless spectrum. We quantify the effect using morphological parameters: Sérsic index, effective radius, position angle, and axis ratio. Moreover, we also develop a module for CESS to estimate the overlap contamination rate for CSST grating observations of galaxies in galaxy clusters. Applying CESS to the high-resolution model spectra of a sample of ∼140 million galaxies with mz < 21 mag selected from the Dark Energy Spectroscopic Instrument LS DR9 catalogue, we obtain the simulated CSST slitless spectra. We examine the dependence of measurement errors on different types of galaxies due to instrumental and observational effects and quantitatively investigate the redshift completeness for different environments out to z ∼ 1. Our results show that the CSST spectroscopy is able to provide secure redshifts for about one-quarter of the sample galaxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.