Abstract

We investigated whether HIV-1 inhibition by SRC-family kinase inhibitors is through the non-receptor tyrosine kinase pp60 (c-SRC) and its binding partner, protein tyrosine kinase 2 beta (PTK2B). CD4 T-lymphocytes were infected with R5 (JR-FL) or X4 (HXB2) HIV-1. We used SRC-family kinase inhibitors or targeted siRNA knockdown of c-SRC and PTK2B, then monitored effects on the early HIV-1 lifecycle. Four SRC-family kinase inhibitors or targeted siRNA knockdown were used to reduce c-SRC or PTK2B protein expression. Activated CD4 T-lymphocytes were infected with recombinant, nef-deficient, or replication-competent infectious viruses. Knockdown experiments examined early infection by monitoring: luciferase activity, expression of host surface receptors, reverse transcriptase activity, p24 levels and qPCR of reverse transcripts, integrated HIV-1, and two-long terminal repeat (2-LTR) circles. All SRC-family kinase inhibitors inhibited R5 and X4 HIV-1 infection. Neither c-SRC nor PTK2B siRNA knockdown had an effect on cell surface receptors (CD4, CXCR4, and CCR5) nor on reverse transcriptase activity. However, using JR-FL both decreased luciferase activity while increasing late reverse transcripts (16-fold) and 2-LTR circles (eight-fold) while also decreasing viral integration (four-fold). With HXB2, c-SRC but not PTK2B siRNA knockdown produced similar results. Our results suggest c-SRC tyrosine kinase is a major regulator of HIV-1 infection, participating in multiple stages of infection post-entry: Reduced proviral integration with increased 2-LTR circles is reminiscent of integrase inhibitors used in combination antiretroviral therapy. Decreasing c-SRC expression and/or activity provides a new target for antiviral intervention and the potential for repurposing existing FDA-approved kinase inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.