Abstract

To promote the efficient use of energy storage and renewable energy consumption in the integrated energy system (IES), an economic dispatch strategy for the concentrating solar power (CSP)-IES with generalized energy storage and a conditional value-at-risk (CVaR) model is proposed. First, considering the characteristics of energy storage and distributed power supply timing, a CSP-IES configuration is established by using a CSP plant to achieve thermal decoupling of the combined heat and power unit and by defining the thermal storage system of the CSP plant and the battery as the actual energy storage. Second, the fuzzy response of the logistic function is used to optimize the time-of-use tariff to guide load shifting, and the load shifting is defined as virtual energy storage. Third, the CSP-IES economic dispatch model is established to consider the carbon emission allowance model. Finally, considering the system uncertainty, a fuzzy chance constraint is used to relax the system power balance constraint, and then the trapezoidal fuzzy number is transformed into a deterministic equivalence class, and the CVaR model is used as a risk assessment index to quantify the risk cost of the system due to uncertainty. The CSP-IES economic dispatch model with CVaR is constructed. The feasibility and effectiveness of the proposed optimization model are verified by comparing various scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call