Abstract
All inorganic cesium lead bromide (CsPbBr3) perovskite is a more stable alternative to methylammonium lead bromide (MAPbBr3) for designing high open-circuit voltage solar cells and display devices. Poor solubility of CsBr in organic solvents makes typical solution deposition methods difficult to adapt for constructing CsPbBr3 devices. Our layer-by-layer methodology, which makes use of CsPbBr3 quantum dot (QD) deposition followed by annealing, provides a convenient way to cast stable films of desired thickness. The transformation from QDs into bulk during thermal annealing arises from the resumption of nanoparticle growth and not from sintering as generally assumed. Additionally, a large loss of organic material during the annealing process is mainly from 1-octadecene left during the QD synthesis. Utilizing this deposition approach for perovskite photovoltaics is examined using typical planar architecture devices. Devices optimized to both QD spin-casting concentration and overall CsPbBr3 thickness produce...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.