Abstract

Highly luminescent CsPbBr3 perovskite quantum dots (QDs) are very attractive for applications in power-generating devices. The CsPbBr3 QD solution and its corresponding solid films were satisfactorily prepared. The obtained QDs were characterized by various techniques such as transmission electron microscopy, X-ray diffraction, ultraviolet-visible spectrophotometry, and photoluminescence and radioluminescence spectroscopy. The performance of the CsPbBr3 QD films as an energy conversion material in radioluminescent nuclear batteries was analyzed and discussed. The output performance of different nuclear batteries based on CsPbBr3 QD films was compared and the feasibility and advantages of using them as radioluminescent layers were investigated. On this basis, a long-term equivalent service behavior study was conducted to evaluate the irradiation stability of the CsPbBr3 radioluminescent layer and predict the service life of this type of nuclear battery. The distribution state and penetration depth of hydrogen ions in the films were analyzed and evaluated using physics simulation software. Optical and electrical characteristics confirmed that this perovskite material could offer an efficient, stable, and scalable solution for energy conversion and photoelectric detection in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call