Abstract
Inland waterway dredging is daily maintenance which is undertaken to ensure the safe navigation of ships. Due to the limitations of river width, bridge height, and other conditions, dredging projects usually require different types of ships, namely dredgers, mud-carrying ships, and mud-blowing ships which work in cooperation with each other. The proportion of these three types of ships affects dredging cost and operation efficiency. Most existing algorithms calculate ship proportion according to the operating speeds of ships without considering the influence of navigation locks on waterways. In this paper, we propose a cost-aware ship proportioning (CSP) algorithm based on operation process simulation. The premise is to save dredging cost by making full use of the three types of ships. First, we establish a model to simulate the operation process of the three types of ships considering navigation locks. Furthermore, we utilize the simulation model to obtain the optimal ship proportion that has the lowest cost through loop iterations. In addition, we quantify the relationship between the opening time of navigation locks and the project cost. We evaluate the effectiveness of CSP in terms of the project cost based on real engineering data. The experiment results show that CSP significantly outperforms the baseline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.