Abstract

The search for DNA polymorphisms useful for the genetic improvement of dairy farm animals has spanned more than 40 years, yielding relevant findings in cattle for milk traits, where the best combination of alleles for dairy processing has been found in casein genes and in DGAT1. Nowadays, similar results have not yet been reached in river buffaloes, despite the availability of advanced genomic technologies and accurate phenotype records. The aim of the present study was to investigate and validate the effect of four single nucleotide polymorphisms (SNP) in the CSN1S1, CSN3, SCD and LPL genes on seven milk traits in a larger buffalo population. These SNPs have previously been reported to be associated with, or affect, dairy traits in smaller populations often belonging to one farm. A total of 800 buffaloes were genotyped. The following traits were individually recorded, monthly, throughout each whole lactation period from 2010 to 2021: daily milk yield (dMY, kg), protein yield (dPY, kg) and fat yield (dFY, kg), fat and protein contents (dFP, % and dPP, %), somatic cell count (SCC, 103 cell/mL) and urea (mg/dL). A total of 15,742 individual milk test day records (2496 lactations) were available for 680 buffalo cows, with 3.6 ± 1.7 parities (from 1 to 13) and an average of 6.1 ± 1.2 test day records per lactation. Three out four SNPs in the CSN1S1, CSN3 and LPL genes were associated with at least one of analyzed traits. In particular, the CSN1S1 (AJ005430:c.578C>T) gave favorable associations with all yield traits (dMY, p = 0.022; dPY, p = 0.014; dFY, p = 0.029) and somatic cell score (SCS, p = 0.032). The CSN3 (HQ677596: c.536C>T) was positively associated with SCS (p = 0.005) and milk urea (p = 0.04). Favorable effects on daily milk yield (dMY, p = 0.028), fat (dFP, p = 0.027) and protein (dPP, p = 0.050) percentages were observed for the LPL. Conversely, the SCD did not show any association with milk traits. This is the first example of a confirmation study carried out in the Mediterranean river buffalo for genes of economic interest in the dairy field, and it represents a very important indication for the preselection of young bulls destined for breeding programs aimed at more sustainable dairy production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call