Abstract
Intersection management is one of the main challenging issues in road safety because intersections are a leading cause of traffic congestion and accidents. In fact, more than 44% of all reported crashes in the U.S. occur around intersection areas, which, in turn, has led to 8,500 fatalities and approximately 1 million injuries every year. With vehicles expected to become self-driving, the question is whether high throughput can be obtained through intersections while keeping them safe. A spatio-temporal intersection protocol named the Ballroom Intersection Protocol (BRIP) [8] was recently proposed in the literature to address this situation. Under this protocol, automated and connected vehicles arrive at and go through an intersection in a cooperative fashion with no vehicle needing to stop, while maximizing the intersection throughput. Though no vehicles run into one another under ideal environments with BRIP, vehicle accidents can occur when the self-driving vehicles have location errors and/or control system failure. In this article, we present a safe and practical intersection protocol named the Configurable Synchronous Intersection Protocol (CSIP). CSIP is a more general and resilient version of BRIP. CSIP utilizes a certain inter-vehicular distance to meet safety requirements in the presence of GPS inaccuracies and control failure. The inter-vehicular distances under CSIP are much more acceptable and comfortable to human passengers due to longer inter-vehicular distances that do not cause fear. With CSIP, the inter-vehicular distances can also be changed at each intersection to account for different traffic volumes, GPS accuracy levels, and geographical layout of intersections. Our simulation results show that CSIP never leads to traffic accidents even when the system has typical location errors, and that CSIP increases the traffic throughput of the intersections compared to common signalized intersections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.