Abstract

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a genetic motor neuron disease affecting infants. This condition is caused by mutations in the IGHMBP2 gene and currently has no cure. Stem cell transplantation is a potential therapeutic strategy for motor neuron diseases such as SMARD1, exerting beneficial effects both by replacing cells and by providing support to endogenous motor neurons. In this work, we demonstrate that human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) selected for the expression of specific markers, namely, Lewis X, CXCR4 and beta 1 integrin, and pretreated with neurotrophic factors and apoptosis/necroptosis inhibitors were able to effectively migrate and engraft into the host parenchyma after administration into the cerebrospinal fluid in a SMARD1 mouse model. We were able to detect donor cells in the ventral horn of the spinal cord and observe improvements in neuropathological features, particularly preservation of the integrity of the motor unit, that were correlated with amelioration of the SMARD1 disease phenotype in terms of neuromuscular function and lifespan. This minimally invasive stem cell approach can confer major advantages in the context of cell-mediated therapy for patients with neurodegenerative diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.