Abstract

Alzheimer's disease is a neurodegenerative disorder characterized pathologically by amyloid-beta plaques, tau tangles and neuronal loss. In clinical practice, the 14-3-3 isoform beta (β) is a biomarker that aids in the diagnosis of sporadic Creutzfeldt-Jakob disease. Recently, a proteomics study found increased CSF 14-3-3β levels in Alzheimer's disease patients, suggesting a potential link between CSF 14-3-3β and Alzheimer's disease. Our present study aimed to further investigate the role of CSF 14-3-3β in Alzheimer's disease by analysing the data of 719 participants with available CSF 14-3-3β measurements from the Alzheimer's Disease Neuroimaging Initiative. Higher CSF 14-3-3β levels were observed in the mild cognitive impairment group compared to the cognitively normal group, with the highest CSF 14-3-3β levels in the Alzheimer's disease dementia group. This study also found significant associations between CSF 14-3-3β levels and CSF biomarkers of p-tau, t-tau, pTau/Aβ42 ratios and GAP-43, as well as other Alzheimer's disease biomarkers such as Aβ-PET. An early increase in CSF 14-3-3β levels was observed prior to Aβ-PET-positive status, and CSF 14-3-3β levels continued to rise after crossing the Aβ-PET positivity threshold before reaching a plateau. The diagnostic accuracy of CSF 14-3-3β (area under the receiver operating characteristic curve = 0.819) was moderate compared to other established Alzheimer's disease biomarkers in distinguishing cognitively normal Aβ pathology-negative individuals from Alzheimer's disease Aβ pathology-positive individuals. Higher baseline CSF 14-3-3β levels were associated with accelerated cognitive decline, reduced hippocampus volumes and declining fluorodeoxyglucose-PET values over a 4-year follow-up period. Patients with mild cognitive impairment and high CSF 14-3-3β levels at baseline had a significantly increased risk [hazard ratio = 2.894 (1.599-5.238), P < 0.001] of progression to Alzheimer's disease dementia during follow-up. These findings indicate that CSF 14-3-3β may be a potential biomarker for Alzheimer's disease and could provide a more comprehensive understanding of the underlying pathological changes of Alzheimer's disease, as well as aid in the diagnosis and monitoring of disease progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call