Abstract

Renal tubule epithelia represent the primary site of damage in acute kidney injury (AKI), a process initiated and propagated by the infiltration of macrophages. Here we investigated the role of resident renal macrophages and dendritic cells in recovery from AKI after ischemia/reperfusion (I/R) injury or a novel diphtheria toxin-induced (DT-induced) model of selective proximal tubule injury in mice. DT-induced AKI was characterized by marked renal proximal tubular cell apoptosis. In both models, macrophage/dendritic cell depletion during the recovery phase increased functional and histologic injury and delayed regeneration. After I/R-induced AKI, there was an early increase in renal macrophages derived from circulating inflammatory (M1) monocytes, followed by accumulation of renal macrophages/dendritic cells with a wound-healing (M2) phenotype. In contrast, DT-induced AKI only generated an increase in M2 cells. In both models, increases in M2 cells resulted largely from in situ proliferation in the kidney. Genetic or pharmacologic inhibition of macrophage colony-stimulating factor (CSF-1) signaling blocked macrophage/dendritic cell proliferation, decreased M2 polarization, and inhibited recovery. These findings demonstrated that CSF-1-mediated expansion and polarization of resident renal macrophages/dendritic cells is an important mechanism mediating renal tubule epithelial regeneration after AKI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.