Abstract
Polyamines are a potential source of γ-aminobutyric acid (GABA) in plants under abiotic stress. However, studies on GABA enrichment in tea mostly focus on the GABA shunt, while the correlation between polyamine degradation and GABA formation in tea is largely unknown. In this study, tea plants responded to exogenous putrescine, resulting in a significant increase in GABA content, while the glutamate level did not change. At the same time, five copper-containing amine oxidase (CuAO) and eight aminoaldehyde dehydrogenase (AMADH) genes involved in the putrescine-derived GABA pathway were identified from the Tea Plant Information Archive. Expression analysis indicated that CsCuAO1, CsCuAO3 as well as CsAMADH1 were induced to play an important function in response to exogenous putrescine. Thus, the three genes were cloned and the catalytic efficiency of soluble recombinant proteins was determined. CsCuAOs and CsAMADH1 exhibited indispensable functions in the GABA production from putrescine in vitro. Subcellular localization assays indicated that CsAMADH1 was localized in plastid, while both CsCuAO1 and CsCuAO3 were localized in peroxisome. In addition, the synergistic effects of CsCuAOs and CsAMADH1 were investigated by a transient co-expression system in Nicotiana benthamiana. Our data suggest that these three genes regulate the accumulation of GABA in tea by participating in the polyamine degradation pathway and improve the content of GABA in tea to a certain extent. The results will greatly contribute to the production of GABA tea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.