Abstract

Drug discovery, which aids to identify potential novel treatments, entails a broad range of fields of science, including chemistry, pharmacology, and biology. In the early stages of drug development, predicting drug–target affinity is crucial. The proposed model, the prediction of drug–target affinity using a convolution model with self-attention (CSatDTA), applies convolution-based self-attention mechanisms to the molecular drug and target sequences to predict drug–target affinity (DTA) effectively, unlike previous convolution methods, which exhibit significant limitations related to this aspect. The convolutional neural network (CNN) only works on a particular region of information, excluding comprehensive details. Self-attention, on the other hand, is a relatively recent technique for capturing long-range interactions that has been used primarily in sequence modeling tasks. The results of comparative experiments show that CSatDTA surpasses previous sequence-based or other approaches and has outstanding retention abilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.