Abstract

While a number of studies have investigated various speech enhancement and processing schemes for in-vehicle speech systems, little research has been performed using actual voice data collected in noisy car environments. In this paper, we propose a new constrained switched adaptive beamforming algorithm (CSA-BF) for speech enhancement and recognition in real moving car environments. The proposed algorithm consists of a speech/noise constraint section, a speech adaptive beamformer, and a noise adaptive beamformer. We investigate CSA-BF performance with a comparison to classic delay-and-sum beamforming (DASB) in realistic car conditions using a corpus of data recorded in various car noise environments from across the U.S. After analyzing the experimental results and considering the range of complex noise situations in the car environment using the CU-Move corpus, we formulate the three specific processing stages of the CSA-BF algorithm. This method is evaluated and shown to simultaneously decrease word-error-rate (WER) for speech recognition by up to 31% and improve speech quality via the SEGSNR measure by up to +5.5 dB on the average.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.