Abstract
A new strategy for improving the robustness of membrane-based ion-selective electrodes (ISEs) is introduced based on the incorporation of microsphere-immobilized ionophores into plasticized polymer membranes. As a model system, a Cs +-selective electrode was developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-[3,5-bis(trifluoromethyl)phenyl] borate (TFPB) as the ion exchanger. Electrodes were evaluated with respect to Cs + in terms of sensitivity, selectivity, and dynamic response. ISEs containing P-EG and TFPB that were plasticized with 2-nitrophenyl octyl ether (NPOE) yielded a linear range from 10 −1 to 10 −5 M Cs +, a slope of 55.4 mV/decade, and a lower detection limit (log a Cs) of −5.3. In addition, these membranes also demonstrated superior selectivity over Li +, Na +, and alkaline earth metal ion interferents when compared to analogous membranes plasticized with bis(2-ethylhexyl) sebacate (DOS) or membranes containing a lipophilic, mobile ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) as ionophore.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.