Abstract

CsPbX3 (X = Cl, Br or I) perovskite quantum dots (PQDs) have gained increasing interest due to their superior performance in photoelectric applications. In our work, a series of Mn2+ doped CsPbBr3 PQDs were successfully prepared in glasses by melt quenching and in situ crystallization technique. Due to the 4T1 (4G)→6A1 (6S) transition of Mn2+, a slight red shift from 510 nm to 516 nm was found, with the FWHM expansion from 18 nm to 26 nm. The PQDs@glasses showed excellent thermal stability, and the exciton binding energy reached a high level of 412 meV. The changes of the electronic structure after Mn doping CsPbBr3 can be demonstrated by first principles. Finally, a contactless electroluminescence device with the PQDs@glasses was designed based on the principle of electromagnetic induction, which is a potential application for detecting distance in sterile and dust-free environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call