Abstract

Searching for the maximum coordination number (CN) in planar species with novel bonding patterns has fascinated chemists for many years. Using the experimentally observed polyynic cyclo[18]carbon D9h C18 and theoretically predicted polyynic cyclo[14]carbon D7h C14 as effective ligands and based on extensive first-principles theory calculations, we predict herein their perfect planar alkaline-metal-centered complexes D9h Cs©C18+ (1) and D7h Na©C14+ (4) which as the global minima of the systems possess the record coordination numbers of CN = 18 and 14 in planar polyynic species, respectively. More interestingly, detailed energy decomposition and adaptive natural density partitioning bonding analyses indicate that the hypercoordinate alkaline-metal centers in these complexes exhibit obvious transition metal behaviors, with effective in-plane (π-6s)σ, (π-7p)σ, and (π-5d)σ coordination bonds formed in Cs©C18+ (1) and (π-3s)σ, (π-3p)σ, and (π-3d)σ coordination interactions fabricated in Na©C14+ (4) to dominate the overall attractive interactions between the metal center and its cyclo[n]carbon ligand. Similarly, alkaline-metal-centered planar Cs Cs©C17B (2), C2v Cs©C17- (3), C2v Na©C13B (5), and C2v Na©C13- (6) have also been obtained with CN = 18, 17, 14, and 13, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call